Publications
Submitted / Under Review / In Press
- Yoon, J.Y.S., K. Wells, D.B. Millet, C. Frankenberg, S. Sanghavi, A.L.S. Swann, J.A. Thornton, and A.J. Turner (submitted), Inferring drivers of tropical isoprene: competing effects of emissions and chemistry, submitted.
- Anderson, D.C., B.N. Duncan, A.H. Souri, J. Liu, S.A. Strode, and D. Ahn (under review), Towards closing the hydroxyl radical budget (OH): Assessing the feasibility and uncertainties in constraining primary OH production from space, under review.
- Dasgupta, B., M. Menoud, C. van der Veen, I. Levin, C. Veidt, H. Moossen, S. Englund Michel, P. Sperlich, S. Morimoto, R. Fujita, T. Umezawa, S.M. Platt, C. Groot Zwaaftink, C. L. Myhre, R. Fisher, D. Lowry, E. Nisbet, J. France, C. Woolley Maisch, G. Brailsford, R. Moss, D. Goto, S. Pandey, S. Houweling, N. Warwick, and T. Röckmann (under review), Harmonisation of methane isotope ratio measurements from different laboratories using atmospheric samples, under review.
2026
- Dadheech, N. and A.J. Turner (2026), Simulating out-of-sample atmospheric transport to enable flux inversions, Atmos. Chem. Phys., 26, 427-441, doi:10.5194/acp-26-427-2026.
2025
- Mei, E.J., G.J. Hakim, M. Taniguichi-King, D. Stiller, and A.J. Turner (2025), Emulating chemistry-climate dynamics with a linear inverse model, Atmos. Chem. Phys., 25, 15033-15045, doi:10.5194/acp-25-15033-2025.
- Yoon, J.Y.S., K. Wells, D.B. Millet, A.L.S. Swann, J.A. Thornton, and A.J. Turner (2025), Impacts of interannual isoprene variations on methane lifetimes and trends, Geophys. Res. Lett., 52, e2025GL114712, doi:10.1029/2025GL114712.
- Dadheech, N., T. He, and A.J. Turner (2025), High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport, Atmos. Chem. Phys., 25, 5159-5174, doi:10.5194/acp-25-5159-2025.
- He, T., N. Dadheech, T.M. Thompson, and A.J. Turner (2025), FootNet v1.0: Development of a machine learning emulator of atmospheric transport, Geosci. Mod. Devel., 18, 1661-1671, doi:10.5194/gmd-18-1661-2025.
- He, T., G.M. Oomen, W. Tang, I. Bouarar, K. Chance, C. Clerbaux, D. Edwards, H. Eskes, B. Gaubert, C. Granier, M. Guevara, D. Jacob, J. Kaiser, J. Kim, S. Kondragunta, X. Liu, E. Marais, K. Miyazaki, R. Park, V.H. Peuch, G. Pfister, A. Richter, T. Stavrakou, R.M. Suleiman, A.J. Turner, B. Veihelmann, Z.C. Zeng, and G. Brasseur (2025), Challenges and opportunities offered by geostationary space observations for air quality research and emission monitoring, Bull. Am. Meteorol. Soc., 106, E939-E963, doi:10.1175/bams-d-23-0145.1.
- Fujita, R., Graven, H., Zazzeri, G., Hmiel, B., Petrenko, V.V., Smith, A.M., Michel, S.E., Morimoto, S. (2025), Global fossil methane emissions constrained by multi-isotopic atmospheric methane histories, J. Geophys. Res., 130, e2024JD041266, doi:10.1029/2024JD041266.
- Morgenstern, O., Moss, R., Manning, M., Zeng, G., Schaefer, H., Usoskin, I., Turnbull, J., Brailsford, G., Nichol, S., and Bromley, T. (2025), Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity, Nat. Commun., 16, 249, doi:10.1038/s41467-024-55603-1.
2024
- He, T., R.J. Boyd, D.J. Varon, and A.J. Turner (2024), Increased methane emissions from oil and gas following the Soviet Union's collapse, Proc. Natl. Acad. Sci., 121, doi:10.1073/pnas.2314600121.
- Hmiel, B., Petrenko, V. V., Buizert, C., Smith, A. M., Dyonisius, M. N., Place, P., Yang, B., Hua, Q., Beaudette, R., Severinghaus, J. P., Harth, C., Weiss, R. F., Davidge, L., Diaz, M., Pacicco, M., Menking, J. A., Kalk, M., Faïn, X., Adolph, A., and Vimont, I. (2024), Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland, The Cryosphere, 18(7), 3363-3382, doi:10.5194/tc-18-3363-2024.
FETCH4 related publications
- Anderson, D. C., B. N. Duncan, A. M. Fiore, C. B. Baublitz, M. B. Follette-Cook, J. M. Nicely, and G. M. Wolfe (2021), Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, doi:10.5194/acp-21-6481-2021.
- Anderson, D. C., M. B. Follette-Cook, S. A. Strode, J. M. Nicely, J. Liu, P. D. Ivatt, and B. N. Duncan (2022), A machine learning methodology for the generation of a parameterization of the hydroxyl radical, Geosci. Model Dev., 15, 6341–6358, doi:10.5194/gmd-15-6341-2022.
- Dyonisius, M., V. Petrenko, A. Smith, B. Hmiel, P. Neff, B. Yang, Q. Hua, J. Schmitt, S. Shackleton, C. Buizert, P. Place, J. Menking, R. Beaudette, C. Harth, M. Kalk, H. Roop, B. Bereiter, C. Armanetti, I. Vimont, S. Englund Michel, E. Brook, J. Severinghaus, R. Weiss, and J. McConnell (2022), Using ice core measurements from Taylor Glacier, Antarctica to calibrate in situ cosmogenic 14C production rates by muons, The Cryosphere Discussions, doi:10.5194/tc-2021-375.
- Dyonisius, M. N., V. V. Petrenko, A. M. Smith, Q. Hua, B. Yang, J. Schmitt, J. Beck, B. Seth, M. Bock, B. Hmiel, I. Vimont, J. A. Menking, S. A. Shackleton, D. Baggenstos, T. K. Bauska, R. H. Rhodes, P. Sperlich, R. Beaudette, C. Harth, M. Kalk, E. J. Brook, H. Fischer, J. P. Severinghaus, and R. F. Weiss (2020), Old carbon reservoirs were not important in the deglacial methane budget, Science, 367, 907–910, doi:10.1126/science.aax0504.
- Etheridge, D. M., L. P. Steele, and R. J. Francey (1998), Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability, J. Geophys. Res., 103, 15979–15993, doi:10.1029/98JD00923.
- Fujita, R., S. Morimoto, S. Maksyutov, H.-S. Kim, M. Arshinov, G. Brailsford, S. Aoki, and T. Nakazawa (2020), Global and regional CH4 emissions for 1995–2013 derived from atmospheric CH4, δ13C-CH4, and δD-CH4 observations and a chemical transport model, J. Geophys. Res., 125, doi:10.1029/2020JD032903.
- Hmiel, B. (2020), A study of in situ cosmogenic 14C and paleoatmospheric 14CH4 from accumulating ice at Summit, Greenland, PhD Thesis, University of Rochester.
- Hmiel, B., V. V. Petrenko, M. N. Dyonisius, C. Buizert, A. M. Smith, P. F. Place, C. Harth, R. Beaudette, Q. Hua, B. Yang, I. Vimont, S. E. Michel, J. P. Severinghaus, D. Etheridge, T. Bromley, J. Schmitt, X. Fain, R. F. Weiss, and E. Dlugokencky (2020), Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions, Nature, 578, 409–412, doi:10.1038/s41586-020-1991-8.
- LeGrande, A. N., G. A. Schmidt, D. T. Shindell, C. V. Field, R. L. Miller, D. M. Koch, G. Faluvegi, and G. Hoffmann (2006), Consistent simulations of multiple proxy responses to an abrupt climate change event, Proc. Natl. Acad. Sci., 103, 837–842, doi:10.1073/pnas.0510095103.
- Miyazaki, K., K. Bowman, T. Sekiya, M. Takigawa, J. L. Neu, K. Sudo, G. Osterman, and H. Eskes (2021), Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns, Sci. Adv., 7, doi:10.1126/sciadv.abf7460.
- Murray, L. T., L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer, and B. Alexander (2014), Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos. Chem. Phys., 14, 3589–3622, doi:10.5194/acp-14-3589-2014.
- Murray, L. T., A. M. Fiore, D. T. Shindell, V. Naik, and L. W. Horowitz (2021), Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon, Proc. Natl. Acad. Sci., 118, doi:10.1073/pnas.2115204118.
- Naik, V., A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J.-F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng (2013), Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277–5298, doi:10.5194/acp-13-5277-2013.
- Neff, P. D., V. V. Petrenko, D. Etheridge, A. M. Smith, E. Crosier, B. Hmiel, D. Thornton, L. Jong, R. Beaudette, C. Harth, and others (2021), A preliminary record of changes in Southern Hemisphere atmospheric OH abundance from 14CO in glacial ice (Law Dome, Antarctica, 1870 AD to present), 2021 AGU Fall Meeting.
- Nicely, J. M., T. P. Canty, M. Manyin, L. D. Oman, R. J. Salawitch, S. D. Steenrod, S. E. Strahan, and S. A. Strode (2018), Changes in global tropospheric OH expected as a result of climate change over the last several decades, J. Geophys. Res., 123, 10774–10795, doi:10.1029/2018JD028388.
- Perkins, W. A. and G. Hakim (2020), Linear inverse modeling for coupled atmosphere–ocean ensemble climate prediction, J. Adv. Model. Earth Syst., 12, doi:10.1029/2019MS001778.
- Petrenko, V. V., P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White (2013), A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air, Atmos. Chem. Phys., 13, 7567–7585, doi:10.5194/acp-13-7567-2013.
- Petrenko, V. V., J. P. Severinghaus, H. Schaefer, A. M. Smith, T. Kuhl, D. Baggenstos, Q. Hua, E. J. Brook, P. Rose, R. Kulin, T. Bauska, C. Harth, C. Buizert, A. Orsi, G. Emanuele, J. E. Lee, G. Brailsford, R. Keeling, and R. F. Weiss (2016), Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates, Geochim. Cosmochim. Acta, 177, 62–77, doi:10.1016/j.gca.2016.01.004.
- Petrenko, V. V., A. M. Smith, H. Schaefer, K. Riedel, E. Brook, D. Baggenstos, C. Harth, Q. Hua, C. Buizert, A. Schilt, X. Faïn, L. Mitchell, T. Bauska, A. Orsi, R. F. Weiss, and J. P. Severinghaus (2017), Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event, Nature, 548, 443–446, doi:10.1038/nature23316.
- Petrenko, V. V., A. M. Smith, E. M. Crosier, R. Kazemi, P. Place, A. Colton, B. Yang, Q. Hua, and L. T. Murray (2021a), An improved method for atmospheric 14CO measurements, Atmos. Meas. Tech., 14, 2055–2063, doi:10.5194/amt-14-2055-2021.
- Petrenko, V. V., E. Crosier, A. M. Smith, B. Yang, L. T. Murray, A. Colton, B. Thomas, R. Burgener, G. Talamoa, H. Schaefer, R. Moss, T. G. Spain, S. O’Doherty, Y. Hello, P. Hernandez, E. Blades, R. Chewitt-Lucas, R. Kazemi, M. Scholer, and M. Stock (2021b), Using measurements of atmospheric 14CO in a global network to improve understanding of OH spatial and temporal variability, 2021 IGAC Meeting.
- Schaefer, H., S. E. Mikaloff Fletcher, C. Veidt, K. R. Lassey, G. W. Brailsford, T. M. Bromley, E. J. Dlugokencky, S. E. Michel, J. B. Miller, I. Levin, D. C. Lowe, R. J. Martin, B. H. Vaughn, and J. W. C. White (2016), A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4, Science, 352, 80–84, doi:10.1126/science.aad2705.
- Stevenson, D. S., A. Zhao, V. Naik, F. M. O’Connor, S. Tilmes, G. Zeng, L. T. Murray, W. J. Collins, P. T. Griffiths, S. Shim, L. W. Horowitz, L. T. Sentman, and L. Emmons (2020), Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., 20, 12905–12920, doi:10.5194/acp-20-12905-2020.
- Turner, A. J., C. Frankenberg, P. O. Wennberg, and D. J. Jacob (2017), Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, Proc. Natl. Acad. Sci., 114, 5367–5372, doi:10.1073/pnas.1616020114.
- Turner, A. J., I. Fung, V. Naik, L. W. Horowitz, and R. C. Cohen (2018), Modulation of hydroxyl variability by ENSO in the absence of external forcing, Proc. Natl. Acad. Sci., 115, 8931–8936, doi:10.1073/pnas.1807532115.
- Turner, A. J., C. Frankenberg, and E. A. Kort (2019), Interpreting contemporary trends in atmospheric methane, Proc. Natl. Acad. Sci., 116, 2805–2813, doi:10.1073/pnas.1814297116.